Calculating Versus Estimating Causal Effects

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating causal effects.

Although one goal of aetiologic epidemiology is to estimate 'the true effect' of an exposure on disease occurrence, epidemio-logists usually do not precisely specify what 'true effect' they want to estimate. We describe how the counterfactual theory of causation, originally developed in philosophy and statistics, can be adapted to epidemiological studies to provide precise answers to the questi...

متن کامل

Negotiation for Calculating Causal Effects in Bi-Agent Causal Models

In this paper we introduce the paradigm of multi-agent causal models (MACM), which are an extension of causal graphical models to a setting where there is no longer one single computational entity (agent) observing or not observing all the domain variables V. Instead there are several agents each having access to non-disjoint subsets of V. The incentive for introducing cooperative multiagent mo...

متن کامل

marginal versus conditional causal effects

conditional  methods  of adjustment  are often used to quantify  the effect  of the exposure on the outcome.  as  a  result,  the  stratums-specific  risk  ratio  estimates  are  reported  in  the  presence  of interaction   between   exposure  and  confounder(s)   in  the  literature,  even  if  the  target  of  the intervention on the exposure is the total population and the interaction itsel...

متن کامل

Marginal versus conditional causal effects

Available online at: http://jbe.tums.ac.ir Conditional methods of adjustment are often used to quantify the effect of the exposure on the outcome. As a result, the stratums-specific risk ratio estimates are reported in the presence of interaction between exposure and confounder(s) in the literature, even if the target of the intervention on the exposure is the total population and the interacti...

متن کامل

Estimating Causal Effects by Bounding Confounding

I Assessing the causal effect of a treatment variable X on an outcome variable Y from observational data is usually difficult due to the possible existence of unobserved common causes. I In our paper we examine how, given an observed dependence between X and Y , various kinds of additional assumptions which related to the “strength” of confounding of X and Y can help to estimate the causal effe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: American Journal of Public Health

سال: 2018

ISSN: 0090-0036,1541-0048

DOI: 10.2105/ajph.2018.304546